Technical Guidance References N9 to N39

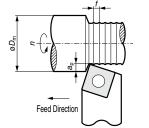
Technical Guidance	
Turning Edition	··N10
Milling Edition	···N15
Endmilling Edition	···N19
Drilling Edition	··N22
SUMIBORON Edition	··N27
References	
SI Unit Conversion List	··N31
Steel and Non-Ferrous Metal Symbols Chart (1)	··N32
Steel and Non-Ferrous Metal Symbols Chart (2)	··N33
Hardness Scale Comparison Chart	··N34
Standard of Tapers	··N35
Dimensional Tolerances for Regularly Used Fits	··N36
Dimensional Tolerances and Fits	··N38
Finished Surface Roughness	··N39

■ Calculating Cutting Speed

(1) Calculating rotation speed from cutting speed

n: Spindle speed (min⁻¹) v_c : Cutting speed (m/min) D_m : Diameter of work piece (mm)

 π : \doteqdot 3.14

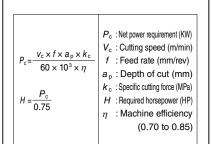

(Ex.) v_c =150m/min, D_m =100mm

$$n = \frac{1,000 \times 150}{3.14 \times 100} = 478 \text{ (min}^{-1}\text{)}$$

(2) Calculating cutting speed from rotational speed

Refer to the above table

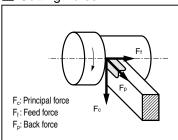
· n : Spindle speed (min-1)


 $\cdot v_c$: Cutting speed (m/min)

· f : Feed rate (mm/rev)

 $\cdot a_p$: Depth of cut (mm)

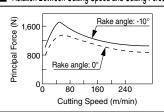
 $\cdot D_{m}$: Diameter of work piece (mm)


■ Calculating Power Requirement

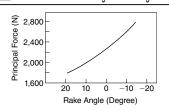
RoughValue of Kc

Aluminium: 800MPa General Steel: 2,500 to 3,000MPa Cast Iron: 1,500MPa

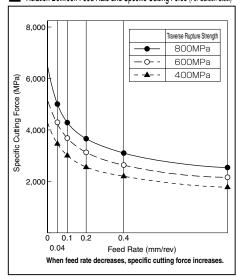
■ Cutting Force



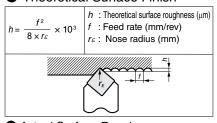
Calculating Cutting Force



- P : Cutting force (kN)
- $m{k}_{\, \mathrm{c}}\,$: Specific cutting force (MPa) $m{q}\,$: Chip area (mm²)
- a_p: Depth of Cut (mm)f: Feed Rate (mm/rev)


Relation Between Cutting Speed and Cutting Force

Relation Between Rake Angle and Cutting Force



Relation Between Feed Rate and Specific Cutting Force (For Carbon Steel)

Roughness

■ Theoretical Surface Finish

Actual Surface Roughness

Steel:

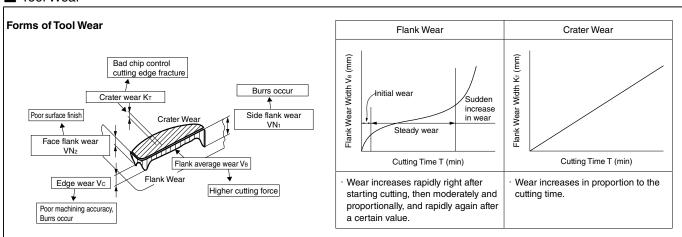
Theoretical surface finish x 1.5 to 3

Theoretical surface finish x 3 to 5

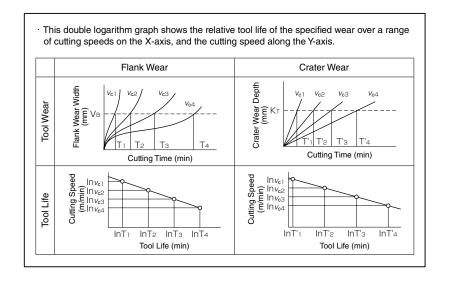
Ways to Improve Finishing Surface Roughness

- (1) Use an insert with a larger nose radius.
- (2) Optimise the cutting speed and feed rate so that built-up edge does not occur.
- (3) Select an appropriate insert grade.
- (4) Use wiper insert

Relation Between Nose Radius and Cutting Force



ons: v_c =100m/min a_p =4mm f =0.45mm/rev


■ Forms of Tool Failures

Cat.	No.	Name of Failure	Cause of Failure
Resulting from Mechanical Causes	(1) to (5) (6) (7)	Flank Wear Chipping Fracture	Due to the scratching effect of hard grains contained in the work material. Fine breakages caused by high cutting loads or chattering. Coarse breakage caused by the impact of an excessive mechanical force acting on the cutting edge.
Resulting from Chemical Reactions	(8) (9) (10) (11)	Crater Wear Plastic Deformation Thermal Crack Built-up Edge	Swaft chips removing tool material as it flow over the top face at high temperatures. Cutting edge is depressed due to softening at high temperatures.

■ Tool Wear

■ Tool Life (V-T)

■ Insert Failure and Countermeasures

Type of Insert Failure	Cause	Countermeasures
Flank Wear		- Oddinomiodou.co
	Grade lacks wear resistance. Cutting speed is too fast. Feed rate is far too slow.	 Select a more wear-resistant grade. P30 → P20 → P10 K20 → K10 → K01 Use an insert with a larger rake angle. Decrease the cutting speed Increase feed rates.
Crater Wear		
	Grade lacks crater wear resistance. Rake angle is too small. Cutting speed is too fast. Feed rate and depth of cut are too large.	 Select a more crater-wear-resistant grade. Use an insert with a larger rake angle. Change the chipbreaker. Decrease the cutting speed Reduce feed rates and depth of cut.
Chipping	· Grade lacks toughness.	· Select a tougher grade.
	Insert falls off due to chip build-up. Cutting edge lacks toughness. Feed rate and depth of cut are too large.	P10 → P20 → P30 K01 → K10 → K20 Increase amount of honing on cutting edge. Reduce rake angle. Reduce feed rates and depth of cut.
Fracture		
	Grade lacks toughness. Cutting edge lacks toughness. Holder lacks toughness. Feed rate is too fast. Depth of cut is too large.	 Select a tougher grade. P10 → P20 → P30 K01 → K10 → K20 Select a chipbreaker with a strong cutting edge. Select a holder with a larger approach angle. Select a holder with a larger shank size. Reduce feed rates and depth of cut.
Welding of Built-up Edge	· Inappropriate grade selection.	· Select a grade with less affinity to the work
41011	Dull cutting edge. Cutting speed is too slow. Feed rate is too slow.	material. Coated carbide or cermet grades. Select a grade with a smooth coating. Use an insert with a larger rake angle. Reduce amount of honing. Increase cutting speeds. Increase feed rates.
Plastic Deformation		
	Grade lacks thermal resistance. Cutting speed is too fast. Feed rate is too fast. Depth of cut is too large. Not enough cutting fluid.	Select a more crater-wear-resistant grade. Use an insert with a larger rake angle. Decrease the cutting speed Reduce feed rates and depth of cut. Supply a sufficient amount of coolant.
Notch Wear	Grade lacks wear resistance. Rake angle is too small. Cutting speed is too fast.	 Select a wear-resistant grade. P30 → P20 → P10 K20 → K10 → K01 Use an insert with a larger rake angle. Alter depth of cut to shift the notch location.

References

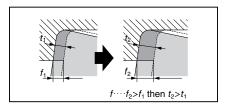
■ Type of Chip Generation

	, , ,							
	Spiralling	Shearing	Tearing	Cracking				
Shape	Work material	Work material	Work material	Work material				
Condition	Continuous chips with good surface finish.	Chip is sheared and separated by the shear angle.	Chips appear to be torn from the surface.	Chips crack before reaching the cutting point.				
Application	Steel, Stainless steel	Steel, Stainless steel (Low speed)	Steel, Cast iron (very low speed, very small feed rate)	Cast iron, Carbon				
Influence Factor	Easy							

■ Type of Chip Control

		Depth	А	В	С	D	Е
Chip Types		Large	(6)		N's	2	
		Small		Chuming Chuming		37300 37300 37430 6760	1233
Evaluation	NC Lati (For Autom	ne ation)	×	×	0	0	Δ
Evalu	General L (For Safe		×	0	0	0~△	×

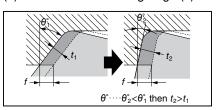
Good: C type, D type

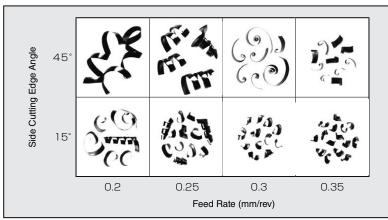

A type: Twines around the tool or workpiece, damages the machined surface and affects safety.

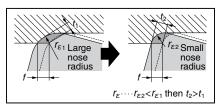
B type: Causes problems in the automatic chip conveyor and chipping occurs easily.

Etype: Causes spraying of chips, poor machined surface due to chattering, chipping, large cutting force and high temperatures.

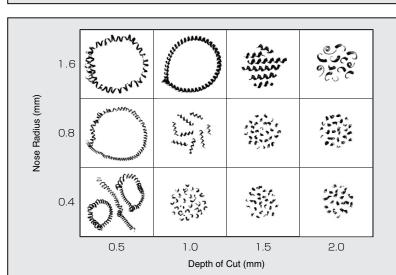
■ Factor of Improvement Chip Control


(1) Increase Feed Rate (f)


When feed rate increases, chips become thick and chip control improves.


(2) Decrease Side Cutting Edge (θ)

Even if feed rate is the same, smaller side cutting edge angle makes chips thick and chip control improves.



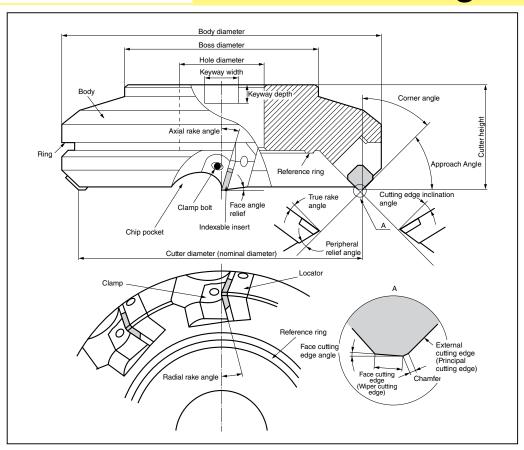
(3) Decrease Nose Radius (rε)

Even if feed rate is the same, a smaller nose radius makes chip thick and chip control improves.

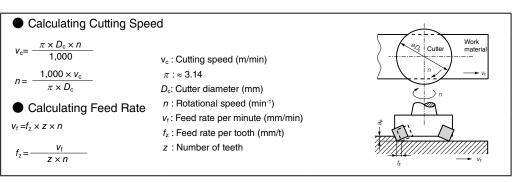
* Cutting force increases in proportion with the length of the contact surface. Therefore, a larger nose radius increases back force which induces chattering. With the same feed rate, a smaller nose radius produces a rougher surface finish.

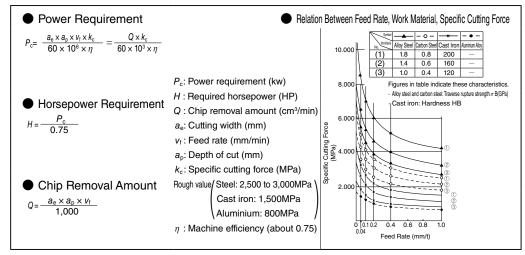
Basics of Threading

Turning Edition


■ Cutting Methods in Threading

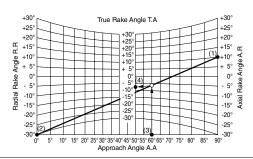
Cutting Method	Characteristics
Radian Infeed Leading Trailing Edge Feed Dir. Direction of Cut	Most common threading technique, used mainly for small pitch threads. Easy to change cutting conditions such as depth of cut, etc. Longer contact points lead to more chatter. Difficult to control chip evacuation. Damage on the trailing edge gets larger faster.
Flank Infeed	Effective for large pitch threads and blemish-prone work material surfaces. Chips evacuate from one side for good chip control. The trailing edge side is worn, and therefore the flank is easily worn.
Corrected Flank Infeed	Effective for large pitch threads and blemish-prone work material surfaces. Chips evacuate from one side for good chip control. Reduces flank wear on trailing edge side.
Alternating Flank Infeed	Effective for large pitch threads and blemish-prone work material surfaces. Wears evenly on right and left cut edges. Since both edges are used alternatively, chip control is sometimes difficult.


■ Troubleshooting for Threading

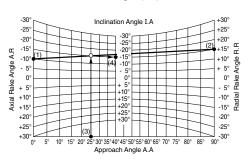

	Failure	Cause	Countermeasures
	Excessive Cutting Edge Wear	· Tool material	· Select a more wear-resistant grade
		· Cutting condition	Decrease the cutting speed Optimise coolant flow and density Change the number of passes.
e Failure	Uneven Wear on Right and Left Sides	· Insert attachment	Check whether the cutting edge inclination angle is appropriate for the screw lead angle. Check whether the tool is mounted properly.
g Edge		· Cutting condition	Change to corrected flank infeed or alternating flank infeed
Cutting	Chipping	· Cutting condition	If caused by a built-up edge, increase cutting speed
	Breakage	· Packing of chips	Supply enough amount of coolant to the cutting edge.
		· Cutting condition	Increase the number of passes while decreasing the depth of cut per pass. Use different tools for roughing and finishing applications.
	Poor Surface Roughness	· Cutting condition	If blemished due to low-speed machining, increase the cutting speed. If chattering occurs, decrease the cutting speed. If the depth of cut of the final pass is small, make it larger.
racy		· Tool material	· Select a more wear-resistant grade
Shape and Accuracy		Inappropriate cutting edge inclination angle	Select a correct shim to secure relief on the side of the insert.
ape an	Inappropriate Thread Shape	· Insert attachment	· Check whether the tool is mounted properly.
Sh	Shallow Thread Depth	· Small depth of cut	· Check cutting depth
	Знаном тпеац Берит	· Tool weara	· Check damage to the cutting edge.

Parts of a Milling Cutter

■ Milling Calculation Formulas



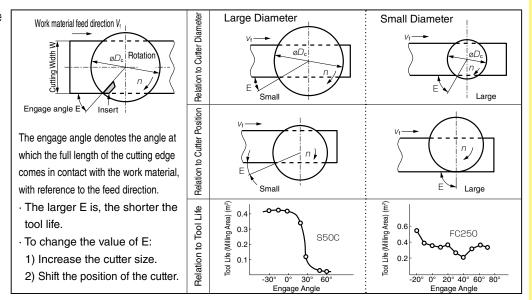
■ Functions of the Various Cutting Angles

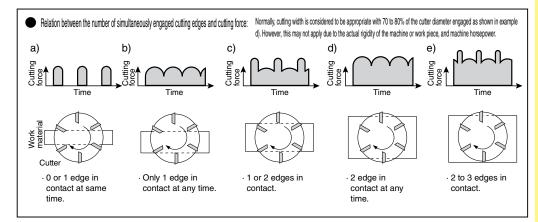

	Description	Symbol	Function	効果
(1) (2)	Axial rake angle Radial rake angle	A.R. R.R.	Determines chip removal direction, built-up edge, cutting force	Available in positive to negative (large to small) rake angles; Typical combinations: Positive and Negative, Positive and Positive, Negative and Negative
(3)	Approach angle	A.A.	Determines chip thickness, chip removal direction	Large: Thin chips and small cutting force
(4)	True rake angle	T.A.	Effective rake angle	Positive (Large): Excellent machinability Low cutting edge strength. Negative (Small): Strong cutting edge and easy chip adhesion.
(5)	Cutting edge inclination angle	I.A.	Determines chip control direction	Positive (Large): Excellent chip control and small cutting force. Low cutting edge strength.
(6)	Face cutting edge angle	F.A.	Determines surface roughness	Small: Improved surface roughness.
(7)	Relief angle		Determines edge strength, tool life, chattering	

True Rake Angle Chart (T.A)

<Formula> tan T.A=tan R.R · cos A.A + tan A.R · sin A.A

Inclination Angle (I.A) Chart


(Ex.) (1) A.R (Axial rake angle) =-10° (2) R.R (Radial rake angle) =+15° (3) A.A (Approach angle) = 25° } -> I (Inclination angle) =-15° (4)


<Formula> tan I.R=tan A.R \cdot cos A.A – tan R.R \cdot sin A.A

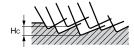
■ Rake Angle Combination

	Negative - Positive Type	Double Positive Type	Double Negative Type
Edge Combination and Chip Removal A.R: Axial rake angle R.R: Radial rake angle A.A: Approach angle (Signal removal direction Removal direction Removal direction Removal direction Removal direction Removal direction Rem	A.A (30° to 45°) A.R. Positive R.R. Negative	A.A (15° to 30°) A.R. Positive	A.A (15° to 30°) A.R. Negative R.R. Negative
Advantages	Excellent chip removal and cutting action	Good cutting action	Double-sided inserts can be used and higher cutting edge strength
Disadvantages	Only single-sided inserts can be used	Lower cutting edge strength and only single-sided inserts can be used	Dull cutting action
Application	For Steel, Cast iron, Stainless steel, Alloy steel	For general milling of steel and low rigidity work piece	For light milling of cast iron and steel
Series	WGC Type, UFO Type	DPG Type	DNX Type, DGC Type, DNF Type
Chips (Ex.) Chips (Ex.) Work material: SCM435 v_c =130m/min f_z =0.23mm/t a_p =3mm			

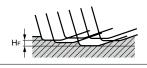
Relation Between Engage Angle and Tool Life

■ To Improve Surface Roughness

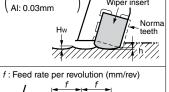
(1) Inserts with wiper flat


When all the cutting edges have wiper flats, a few teeth are intentionally elevated to play the role of a wiper insert.

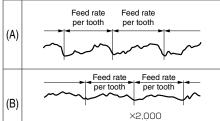
- Insert equipped with straight wiper flat (Face angle: 15' 1°)
- Insert equipped with curved wiper flat (Curvature ≈ R500 (example))


(2) Wiper insert assembling system

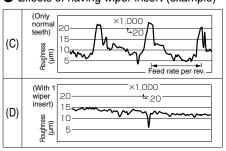
A system to protrude one or two inserts (wiper inserts) with a smooth curved edge just a little beyond the other teeth to wipe the milled surface. (Applies to WGC, RF types, etc.)


Surface roughness without wiper flat

Surface roughness with straight wiper flat


h: Projection value of wiper insert (Fc: 0.05mm) / Wiper

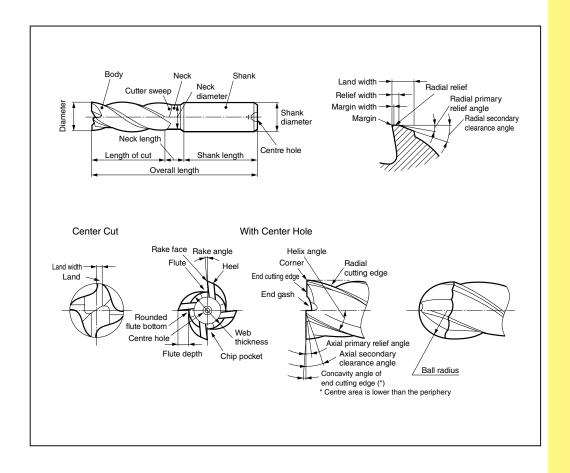
Hc: Surface roughness with only normal teeth Hw: Surface roughness with wiper insert


Influence of different face angles on surface finish

L-×100

- · Work : SCM435 · Cutter: DPG5160R (Single tooth)
 - $v_c = 154 \text{m/min}$ $f_z = 0.234 \text{mm/t}$ $a_z = 2 \text{mm}$
 - a_p = 2mm
 Face Cutting Edge Angle
 (A): 28'
 (B): 6'

Effects of having wiper insert (example)



- · Work : FC250
- · Cutter: DPG4100R
- Insert : SPCH42R
 Face run-out : 0.015mm
- · Radial run-out: 0.04mm
- $v_c = 105 \text{m/min}$
- $f_z = 0.29$ mm/t
 - (1.45 mm/rev)
- (C) : Only normal teeth

(D): With 1 wiper insert

■ Tool Failure and Remedies

	Failure		Basic Remedies	Remedy Examples			
	Excessive Flank Wear	Tool Material Cutting Conditions	 Select a more wear resistant grade. Carbide (P30 → P20) → Coated Cermet Reduce cutting speeds. Increase feed rate. 	- Recommended insert grades Steel Cast Iron Non-Ferrous Alloy Finishing T250A (Cermet) ACK200 (Coated Carbide) BN700 (SUMIBORON) Roughing ACP100 (Coated Carbide) ACK200 (Coated Carbide) DL1000 (Coated Carbide)			
	Excessive Crater Wear	Tool Material Cutting Conditions	Select a crater-resistant grade. Reduce cutting speeds. Reduce depth-of-cut and feed rate.	- Recommended insert grades Steel Cast Iron Non-Ferrous Alloy Finishing T250A (Cermet) ACK200 (Coated Carbide) DA1000 (SUMIDIA) Roughing ACP100 (Coated Carbide) ACK200 (Coated Carbide) DL1000 (Coated Carbide)			
Cutting Edge Failure	Chipping	Tool Material Tool Design Cutting Conditions	Change to tougher grades. P10 → P20 → P30 K01 → K10 → K20 Select a negative-positive cutter configuration with a large peripheral cutting edge angle (a small approach angle). Reinforce the cutting edge (Honing). Select a strong edge insert (G → H). Reduce feed rates.	Recommended insert grades Steel Cast Iron Finishing ACP200 (Coated Carbide) ACK200 (Coated Carbide) Roughing ACP300 (Coated Carbide) ACK300 (Coated Carbide) Recommended cutter: SEC-WaveMill WGX Type Cutting conditions: Refer to H22			
	Breakage	Tool Material Tool Design Cutting Conditions	 If it is due to excessive low speeds or very low feed rates, select an adhesion resistant grade. If it is due to thermal cracking, select a thermal impact resistant grade. Select a negative-positive (or negative) cutter configuration with a large peripheral cutting edge angle (a small approach angle). Reinforce the cutting edge (Honing). Select a stronger chipbreaker (G → H) Increase insert size (Thickness in particular). Select appropriate conditions with regards to the particular application. 	Recommended insert grades Steel Cast Iron Roughing ACP300 (Coated Carbide) ACK300 (Coated Carbide) Recommended cutter: SEC-WaveMill WGX Type Insert thickness: 3.18 → 4.76mm Insert type: Standard → Strong edge type Cutting conditions: Refer to H22			
	Unsatisfactory Machined Surface Finish Chattering	Tool Material Tool Design Cutting Conditions Tool Design	 Select an adhesion resistant grade. Carbide → Cermet Improve axial runout of cutting edges. Use a cutter with less runout Attach correct inserts. Use wiper inserts. Use special purpose cutters designed for finishing. Increase cutting speeds Select a cutter with sharp cutting edges. 	Recommended insert grades Steel Cast Iron Non-Ferrous Alloy Gutter WGX type* ACP200 H1 (Carbide) (Coated Carbide) (Coated Carbide) Cutter WGX type ACK200 H1 (Carbide) (Coated Carbide) DL1000 (Coated Carbide) Cutter WGX type FMU type RF type Insert T250A (Cermet) BN700 (SUMIBORON) * marked cutters can be fitted with wiper inserts. Recommended cutter			
Others	Unsatisfactory Chip Control	Cutting Conditions Others Tool Design	Use an irregular pitched cutter. Reduce feed rates. Improve workpiece and cutter clamp rigidity. Select cutter with good chip removal features. Reduce number of teeth. Enlarge chip pocket.	For Steel: SEC-WaveMill WGX Type For Cast Iron: SEC-DNX Type For Non-Ferrous Alloy: High Speed cutter for Aluminium RF type Recommended cutter: SEC-WaveMill WGX Type			
	Edge Chipping On Workpiece	Tool Design Cutting Conditions	 Increase the peripheral cutting edge angle (decrease the approach angle). Select a stronger chipbreaker (G → L). Reduce feed rates. 	· Recommended cutter: SEC-WaveMill WGX Type			
	Burr On Workpiece	Tool Design Cutting Conditions	Select a cutter with sharp cutting edges.Increase feed rates.Select a low-burr insert.	Recommended cutter: SEC-WaveMill WGX Type + FG Breaker DGC Type + FG Breaker			

Calculating Cutting Conditions (Square Endmill)

Calculating Cutting Speed

$$v_{\rm c} = \frac{\pi \times D_{\rm c} \times n}{1,000}$$

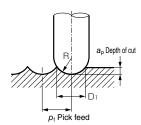
$$n = \frac{1,000 \times v_c}{\pi \times D_c}$$

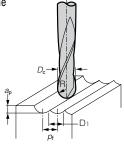
Calculating Feed Rate Per Revolution and Per Tooth

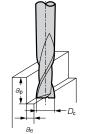
$$v_f = n \times f$$

$$f = \frac{V_{f}}{T_{f}}$$

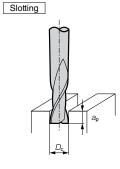
$$v_f = n \times f_z \times z$$

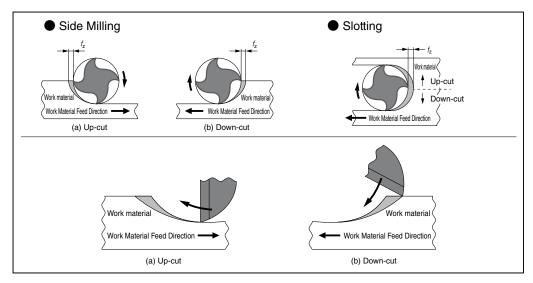

$$f_z = \frac{f}{z} = \frac{v_f}{n \times z}$$

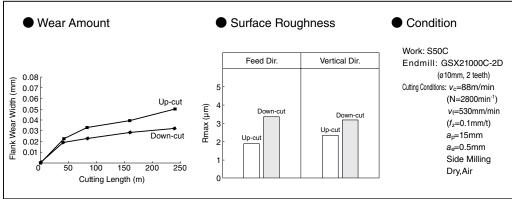

(Ball Endmill)


■ Calculating Notch Width (D₁)

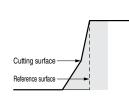
$$D_1 = 2 x \sqrt{2 x R x a_p - a_p^2}$$


 Cutting speed and feed rate (per revolution and per tooth) are calculated using the same formula as square endmill.




Side milling

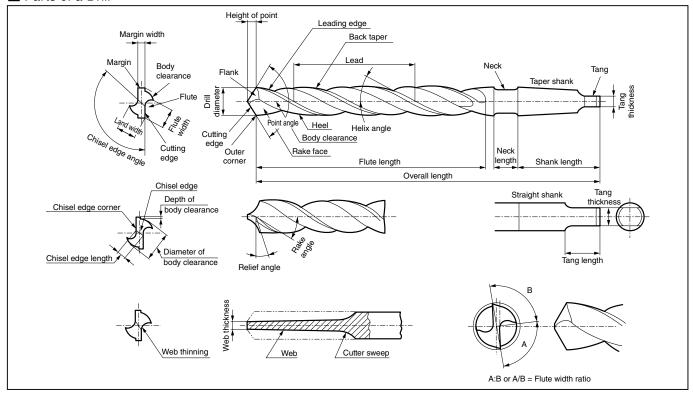
- $\nu_{\text{\tiny c}}\,$: Cutting speed (m/min)
- π : \approx 3.14
- D_c : Endmill diameter (mm)
- n: Spindle speed (min-1)
- v_f: Feed rate (mm/min)
- f : Feed rate per revolution (mm/rev)
- f_z : Feed rate per tooth (mm/t)
- z: Number of teeth
- a_{D} : Axial Depth of Cut (mm)
- a_e: Radial Depth of Cut (mm)
- R: Ballnose Radius


■ Up-cut and Down-cut

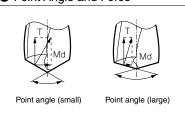
Relation Between Cutting Condition and Deflection

			Side Milling				Slotting			
Endmill Specifications Work: Pre-hardened steel (40HRC) Cutting Conditions: v_c =25m/min a_p =12mm a_e =0.8mm Work: Pre-hardened st (40HRC) Cutting Conditions: v_c =25m/min a_p =8mm a_e =8mm			/	Down-cut						
			Feed	d rate	Feed	d rate	Fee	d rate	Feed rate	
Cat.	Number	Helix	0.16n	nm/rev	0.11mm/rev		0.05mm/rev		0.03mm/rev	
No.	of Teeth	Angle	Style		Style		Style		Style	
			Up-cut	Down-cut	Up-cut	Down-cut	Up-cut	Down-cut	Up-cut	Down-cut
GSX20800S-2D	2	30°					1		1	
GSX40800S-2D	4	30°							7	
	Results	esults The tool tip tends to back off with the down-cut. 4 teeth offers more rigidity and less backing off.						lot tends to cut into the	'	

Technical Guidance Troubleshooting for Endmilling

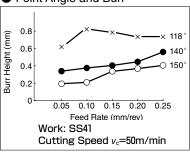

■ Troubleshooting for Endmilling

	Failure		Cause	Remedies
	Excessive Wear	Cutting Conditions Tool Shape Tool Material	Cutting speed is too fast Feed rate is too fast The flank relief angle is too small Insufficient wear resistance	Decrease cutting speed and feed rate. Change to an appropriate flank relief angle Select a substrate with more wear resistance Use a coated tool
Cutting Edge Failure	Chipping	Cutting Conditions Machine Area	 Feed rate is too fast Cutting depth is too deep Tool overhang is too long Work clamps are weak Tool is not firmly attached 	Decrease cutting speed. Reduce depth of cut Adjust tool overhang for correct length Clamp the work piece firmly Make sure the tool is seated in the chuck properly
)	Tool Fracture	Cutting Conditions Tool Shape	 Feed rate is too fast Cutting depth is too deep Tool overhang is too long Cutting edge is too long Web thickness is too small 	Decrease cutting speed. Reduce depth of cut Reduce tool overhang as much as possible Select a tool with a shorter cutting edge Change to more appropriate web thickness
	Shoulder Deflection	Cutting Conditions Tool Shape	 Feed rate is too fast Cutting depth is too deep Tool overhang is too long Cutting on the down-cut Helix angle is large Web thickness is too thin 	Decrease cutting speed. Reduce depth of cut Adjust tool overhang for correct length Change directions to up-cut Use a tool with a smaller helix angle Use a tool with the appropriate web thickness
ırs	Unsatisfactory Machined Surface Finish	Cutting Conditions	Feed rate is too fast Packing of chips	Decrease cutting speed.Use air blowUse an insert with a larger relief pocket.
Othe	Chattering	Cutting Conditions Tool Shape Machine Area	 Cutting speed is too fast Cutting on the up-cut Tool overhang is too long Rake angle is large Work clamps are weak Tool is not firmly attached 	Decrease the cutting speed Change directions to down-cut Adjust tool overhang for correct length Use a tool with an appropriate rake angle Clamp the work piece firmly Make sure the tool is seated in the chuck properly
	Packing of Chips	Cutting Conditions Tool Shape	Feed rate is too fastCutting depth is too deepToo many teethPacking of chips	Decrease cutting speed.Reduce depth of cutReduce number of teethUse air blow

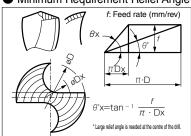

Basics of Drilling

Drilling Edition

■ Parts of a Drill



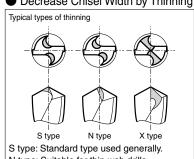
Point Angle and Force


When point angle is large, thrust becomes large but torque becomes small.

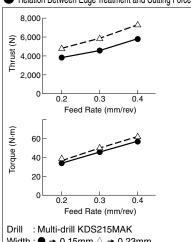
Point Angle and Burr

When point angle is large, burr height becomes low.

Minimum Requirement Relief Angle



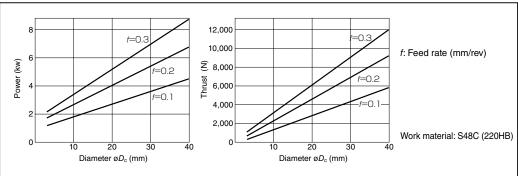
Web Thickness and Thrust


Web thinning decreases the thrust concentrated at the chisel edge, makes the drill edge sharp, and improves chip control.

Decrease Chisel Width by Thinning

N type: Suitable for thin web drills. X type: For hard-to-cut material or deep hole drilling. Drill starts easier.

Relation Between Edge Treatment and Cutting Force


Width : $\bullet \rightarrow 0.15$ mm $\triangle \rightarrow 0.23$ mm

Work: S50C (230HB)

Cutting Conditions : v_c =50m/min, Wet

Drill : ø10mm Work : S50C 230HB

Reference of Power Requirement and Thrust

- Cutting Condition Selection
- Control Cutting Force for Low Rigid Machine

The following table shows the relation between edge treatment width and cutting force. If a problem caused by cutting force occurs, reduce either the feed rate or the edge treatment width.

Cutting Conditions		Edge Treatment Width				
Culling C	onunions	0.15mm		0.05	5mm	
v _c (m/min)	f(mm/rev)	Torque (N⋅m)	Thrust (N)	Torque (N⋅m)	Thrust (N)	
40	0.38	12.8	2,820	12.0	2,520	
50	0.30	10.8	2,520	9.4	1,920	
60	0.25	9.2	2,320	7.6	1,640	
60	0.15	6.4	1,640	5.2	1,100	

High Speed Machining Recommendation

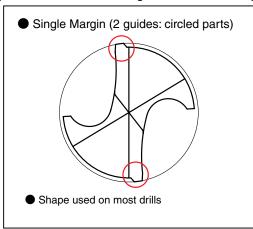
If there is surplus capacity with enough machine power and rigidity under normal cutting conditions, you can ensure sufficient tool life even with high-speed machining. In high-speed machining, however, a sufficient amount of coolant must be supplied.

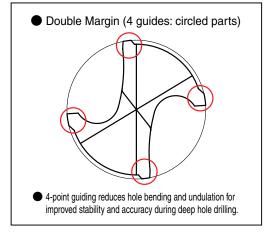
Wear Example

Flank face

Pake a face

V_c=60m/min

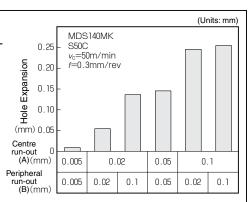

Work: S50C (230HB)


Cond.: f = 0.3mm/rev

: 600holes (Cutting length: 30m)

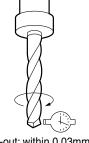
H = 50mm

■ Explanation of Margins (Difference between single and double margins)



■ Run-out Accuracy

For the run-out accuracy of web-thinned drills, not only the difference in lip height (B) but also the run-out after thinning (A) is important.

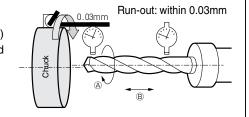

- (A): The run-out accuracy of thinning point
- (B): The difference of the lip height

Peripheral Run-out Accuracy when Tool Rotates

When the tool rotates

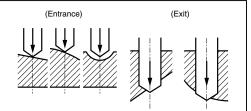
The peripheral run-out accuracy of the drill mounted on the spindle should be controlled within 0.03mm. If the run-out exceeds the limit, the drilled hole will also become large causing an increase in the horizontal cutting force, which may result in drill breakage.

Run-out: within 0.03mm


Peripheral Run-out	Hole Expansion 0 0.05(mm)		Cutting Force*	
(mm)	, i	0.03(11111)	Ŭ I	IU (Kg)
0.005				
0.09				

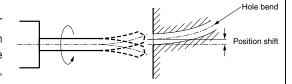
* Horizontal cutting force.

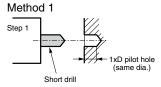
Drill: MDS120MK Work material: S50C (230HB)
Cutting Conditions: v_C=50m/min, f=0.3mm/rev, H=38mm
Water soluble coolant

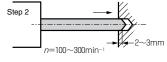

● When the work material rotates

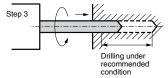
Not only the peripheral run-out at the drill edge (A) but also the concentricity at (B) should be controlled within 0.03mm.

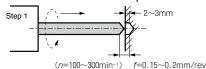
■ Influence of Work Material Surface

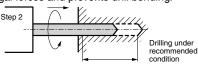

■ Work material with slanted or uneven surface If the surface of the hole entrance or exit is slanted or uneven, decrease the feed rate to 1/3 to 1/2 of the recommended cutting condition.


■ How to Use a Long Drill


Problem


When using a long drill (e.g. XHGS type and XHT type), DAK type drill, or SMDH-D type drill at high rotation speeds, the run-out of the drill tip may cause a deviation of the entry point as shown on the right, bending the drill hole and resulting in drill breakage.


Remedies



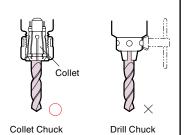
Method 2 * Low rotational speed minimises centrifugal forces and prevents drill bending.

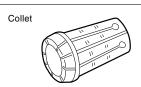
N

■ Drill Maintenance

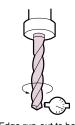
(1) Collet Selection and Maintenance

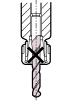
 Ensure proper chucking of drills to prevent vibration. Collet chucks (thrust bearing type) provide strong and secure grip force.


> Drill chucks and keyless chucks are not suitable for MultiDrills as they have a weaker grip force.


 When replacing drills, regularly remove cutting debris inside the collet by cleaning the collet and the spindle with oil. Repair marks with an oilstone.

(2) Drill Installation


- The peripheral run-out of the drill mounted on the spindle should be controlled within
- Do not chuck on the drill flute.

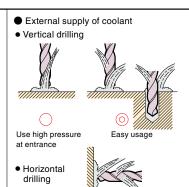

If drill flute inside the holder, chip removal will be obstructed thus causing damage to the drills.

If there are marks, repair with an oilstone or change to a new one.

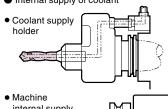
Edge run-out to be

Do not grip on the

Using Cutting Oil


(1) Choosing of **Cutting Oil**

- If cutting speed is more than 40m/min, cutting oil JISW1 type 2 is recommended for its good cooling effect & chip removal ability as it is highly soluble.
- If cutting speed is below 40m/min and longer tool life is a priority, non-water cutting oil JISA1 type 2, an activated sulphuric chloride oil. is recommended for its lubricity. * Non-water soluble oil may be flammable. To prevent fire, a substantial amount of oil should be used to cool the component so that smoke or heat will not be generated.

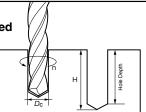

(2) Supply of Coolant

- If using an external supply of coolant, fill a substantial amount from the inlet. Oil pressure range: 0.3 to 0.5 MPa, oil level range: 3 to 10 /min.
- If using an internal supply of coolant (Ex: HK Type) for holes For holes ø4 or smaller, the oil pressure must be at least 1.5MPa to ensure a sufficient supply of coolant.

holes ø6 or larger: 0.5 to 1.0 MPa for hole depths below 3 times the drill diameter, and 1 to 2 MPa or more for hole depths more than 3 times the diameter.

Internal supply of coolant

Use high pressure at entrance



Calculation of Power Consumption and Thrust

Calculating Cutting Speed

$$v_{\rm c} = \frac{\pi \times D_{\rm c} \times n}{1,000}$$

$$n = \frac{1,000 \times v_{c}}{\pi \times D_{c}}$$

Calculating Feed Rate Per Revolution and Per Tooth $\, v_{
m c} \,$: $\,$ Cutting Speed (m/min)

 $v_f = n \times f$

D_c: Drill Diameter (mm)

 $f = \frac{V_f}{T}$: Circular Constant ≈ 3.14

n: Spindle Speeds (min-1)

Calculation of Cutting Time f

V_f: Feed Rate (mm/min)

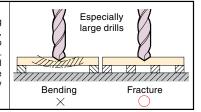
: Feed Rate per Revolution (mm/rev)

H: Drilling Depth (mm)

T: Cutting Time (min)

HB: Brinell Hardness

Calculation of Power Consumption and Thrust

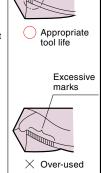

Power Consumption(kW) = HB $\times D_c^{0.68} \times V_c^{1.27} \times f^{0.59}/36,000$

Thrust (N) = 0.24 × HB × $D_c^{0.95}$ × $f^{0.61}$ × 9.8

* When designing the machine, an allowance of 1.6 x Power Consumption and 1.4 x Thrust should be given.

Work Clamping

High thrust forces occur during high-efficiency drilling. Therefore, the workpiece must be supported to prevent fracture caused by bending. Also, large torques and horizontal cutting forces occur. Therefore, the workpiece must be clamped firmly enough to withstand them.



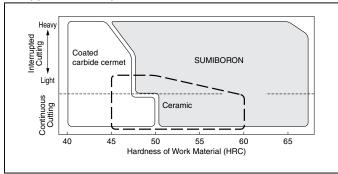
Drill Regrinding

When one or two feed marks (lines) appear on the margin, when corner wear reaches the margin width, or when small chipping occurs, it indicates that the drill needs to be sent

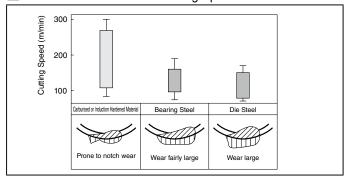
 How and where to regrind We recommend applying regrinding and recoating.
Recoating is recommended to prevent shortening of tool life. Note, ask us or an approved vendor to recoat with our proprietary coating.

Regrinding on your own Customers regrinding their own drills can obtain MultiDrill Regrinding Instructions from us directly or vour vendor.

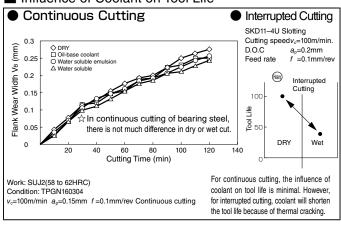
Tool life determinant

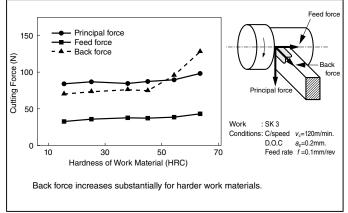

1 to 2

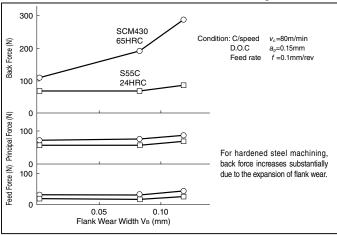
feed marks

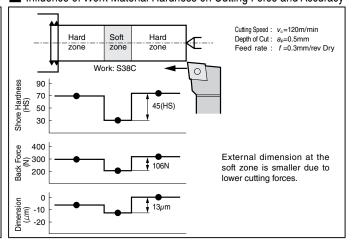

■ Troubleshooting for Drilling

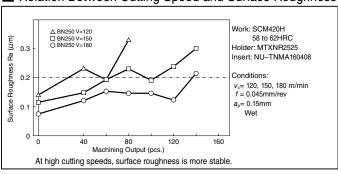
	Failure	Cause	Basic Remedies	Remedy Examples
	Excessive Wear on	· Inappropriate cutting	· Use higher cutting speeds.	- Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
	Cutting Edge	conditions.	· Increase feed rates.	Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
		Unsuitable cutting fluid.	· Reduce pressure if using internal coolant.	- 1.5 MPa or below (external coolant if hole depth is L/D = 2 or less).
		Orioditable outling hald.	· Use cutting fluid with more lubricity.	· Use JIS A1 grade No. 1 or its equivalent.
	Chisel Point	· Off-centre starts.	· Reduce feed rate at entry point.	· f=0.08 to 0.12mm/rev
	Chipping	On certife starts.	· Pre-processing to ensure flat contact surface.	· Use endmill to produce flat surface.
		· Equipment and/or work	· Change cutting conditions to reduce resistance.	\cdot Increase v_c and decrease f (reduce thrust).
		material lacks rigidity.	· Improve work material clamp rigidity.	
		· Cutting edge is too	· Increase size of chisel width.	· Set chisel width from 0.1 to 0.2 mm.
		weak.	· Increase amount of honing on cutting edge.	· Make thinning section of central area 1.5x current width.
	Chipping On	· Inappropriate drilling	· Decrease the cutting speed.	- Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
	Peripheral Cutting	conditions.	· Reduce feed rate.	- Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
	Edge	· Unsuitable cutting fluid.	· Use cutting fluid with more lubricity.	· Use JIS A1 grade No. 1 or its equivalent.
_ @		Equipment and/or work material lacks rigidity.	· Improve work material clamp rigidity.	
Orill Failure		· Cutting edge is too	· Increase amount of honing on cutting edge.	· Make peripheral cutting edge 1.5x current width.
E		weak.	· Reduce the amount of front flank angle.	\cdot Reduce the amount of front flank angle by 2° to 3°.
I≣		Peripheral cutting edge starts cutting first	· Increase margin width (W margin).	· Increase margin width by 2 to 3x current width.
		· Cutting interrupted	· Reduce feed rate.	- Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
		when drilling through	· Increase amount of honing on cutting edge.	· Make peripheral cutting edge 1.5x current width.
		workpiece.	· Reduce the amount of front flank angle.	\cdot Reduce the amount of front flank angle by 2° to 3°.
	Margin Wear	Inappropriate drilling conditions.	· Decrease the cutting speed.	- Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
	J	· Unsuitable cutting	· Use cutting fluid with more lubricity.	· Use JIS A1 grade No. 1 or its equivalent.
		fluid.	· Increase coolant supply.	· If using external coolant, change to internal coolant supply.
		· Latent margin wear.	\cdot Early regrind to ensure adequate back taper.	· Regrind margin damage to 1 mm or less.
		· Unsuitable tool design.	· Increase amount of back taper.	· Make back taper 0.5/100.
		· Orisultable tool design.	· Reduce margin width.	· Decrease margin width to two-thirds of current width.
	Drill Breakage	· Chip build-up.	· Use optimal cutting conditions and tools.	- Refer to the table of recommended conditions in the Igetalloy Cutting Tools Catalogue.
		Omp band up.	· Increase coolant supply.	If using external coolant, change to internal coolant supply.
		Collet clamp lacks strength.	· Use collet with strong grip force.	Replace collet chuck if damaged.
		Equipment and/or work material lacks rigidity.	· Improve work material clamp rigidity.	Use collet holder one size bigger.
		Equipment und of work material action rigidity.	Reduce feed rate at entry point.	· f=0.08 to 0.12mm/rev
	Oversized Holes	· Off-centre starts.	Decrease the cutting speed.	Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
		On contro starts.	Pre-processing to ensure flat contact surface.	Use endmill to produce flat surface.
ि			 Use optimal drill type for hole depth. 	Refer to the Igetalloy Cutting Tools Catalogue.
<u>r</u> a		· Drill bit lacks rigidity.	Improve overall rigidity of drill.	Large web with comparatively small flute.
25			Improve drill clamp precision.	Replace collet chuck if damaged.
Φ		· Drill bit has run-out	Improve drill clamp rigidity.	Use collet holder one size bigger.
후		Equipment and/or work material lacks rigidity.	Improve work material clamp rigidity.	Ose concernoration one size biggor.
>		Inappropriate cutting	Increase cutting speeds.	Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
ફ	Poor Surface Finish	conditions.	· Reduce feed rate.	Refer to the lower limit of recommended conditions listed in the Igetalloy Cutting Tools Catalogue.
lac		· Unsuitable cutting fluid.	Use cutting fluid with more lubricity.	· Use JIS A1 grade No. 1 or its equivalent.
Unsatisfactory Hole Accuracy	Halaa Ara Nat	· Off-centre starts.	· Increase feed rates.	Refer to the upper limit of the recommended conditions listed the lgetalloy Cutting Tools Catalogue.
ns	Holes Are Not Straight	· Drill is not mounted	· Improve drill clamp precision.	Replace collet chuck if damaged.
	Straight	properly.	· Improve drill clamp rigidity.	Use collet holder one size bigger.
		· Equipment and/or work	· Improve work material clamp rigidity.	
		material lacks rigidity.	Select a double margin tool.	· Refer to the Igetalloy Cutting Tools Catalogue.
ō	Packing Of Chips	· Inappropriate drilling	· Increase cutting speeds.	Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
) Jul	i acking Or Chips	conditions.	· Increase feed rates.	Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
Unsatisfactory Chip Control		· Poor chip evacuation.	- Increase the amount or pressure of coolant applied if using internal coolant.	
Jy C	Long Stringy Chips	· Inappropriate drilling	· Increase feed rates.	- Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
factc		conditions.	· Increase cutting speeds.	- Refer to the upper limit of the recommended conditions listed the Igetalloy Cutting Tools Catalogue.
satis		Cooling effect is too strong.	· Reduce pressure if using internal coolant.	· Keep pressure 1.5 MPa or lower if using internal coolant.
	I	· Dull cutting edge.	· Reduce amount of edge honing.	· Reduce to around two-thirds of current width.

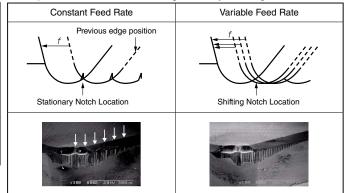

Application Map of the Various Tool Materials


■ Work Materials and their Cutting Speed Recommendations

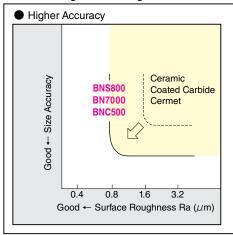

■ Influence of Coolant on Tool Life

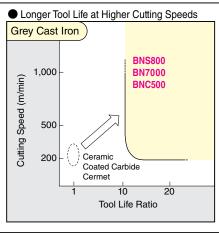

■ Relation Between Work Material Hardness and Cutting Force

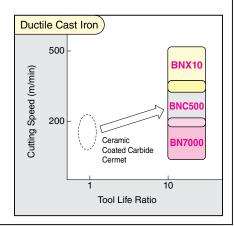

■ Relation Between Flank Wear and Cutting Force


Influence of Work Material Hardness on Cutting Force and Accuracy

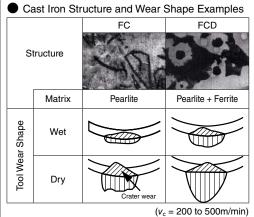
■ Relation Between Cutting Speed and Surface Roughness

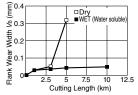


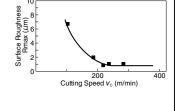

■ Improvement of Surface Roughness by Altering the Feed Rate



 $^{\ \ \, \ \ \, \ \ \, \ \ \, \ \ \,}$ Varying the feed rate spreads the notch location over a larger area. \rightarrow Surface finish improves and notch wear decreases.

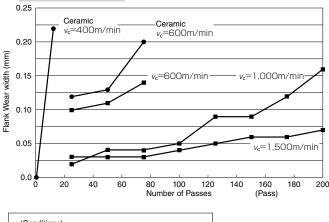

Advantages of Using SUMIBORON for Cast Iron Machining





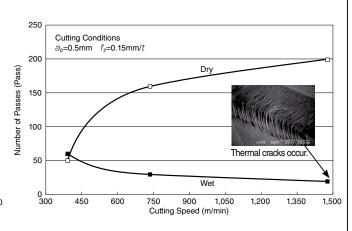
■ Turning

Work: FC250 Continuous cutting Tool material: BN500 Tool Shape: SNGN120408 Continuous cutting: BN500 : SNGN120408 : v_c =450m/min a_p =0.25mm f =0.15mm/rev Dry&Wet (water soluble)


Machine : N/C lathe
Work : FC250 200HB
Holder : MTJINP2525
Tool material : BN500
Tool Shape : TNMA160408 Machine Work Holder v_c =110 to 280m/min f =0.1mm/rev a_p =0.1mm Wet Conditions

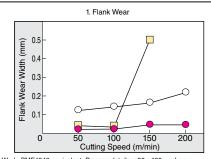
Milling

SUMIBORON BN Finish Mill EASY

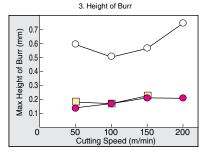


- · High speed machining v_c=2,000m/min
- · Surface Roughness 3.2Rz (1.0Ra)
- · Running cost is reduced because of economical insert.
- · Easy insert setting with the aid of a setting gauge.
- · Employs safe, anti-centrifugal force construction for high-speed conditions.

Work: FC250 · Condition: $a_p = 0.5$ mm $f_z = 0.1$ mm/t Dry


· Tool material: BN7000

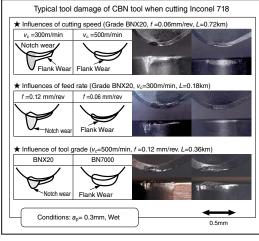
Dry cutting is recommended for high speed milling of cast iron with SUMIBORON.

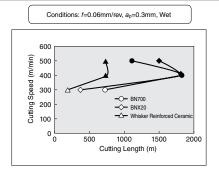

Machining Hard-to-cut Materials with SUMIBORON

Powder Metal

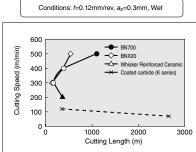
Work: SMF4040 equivalent, Process details: ø80-ø100mm heavy interrupted facing with grooves and drilled holes. (After 40 passes) Cutting Conditions: f=0.1mm/rev, $a_p=0.1$ mm, Wet Insert: TNGA160404

2. Surface Roughness Surface Roughness Rz (0 100 150 200

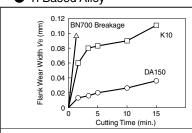



- SUMIBORON - Carbide - Cermet

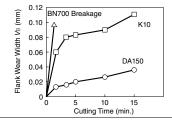
For general powder metal components, carbide and cermet grades can perform up to v_c =100m/min. However, around v_c =120m/min SUMIBORON, on the other hand, exhibits stability and superior wear resistance, burr prevention and surface roughness especially


Heat Resistive Alloy

Ni Based Alloy

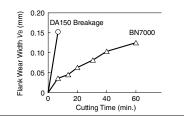


Notch wear = 0.25mm (()) BNX20 is recommended for high speed and low feed rates BN700 is recommended for cutting speeds below v_c =240m/min


Notch wear = 0.25mm (O) BN700 is recommended for cutting at high feed rates.

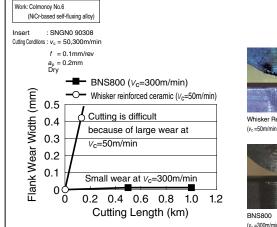
Ti Based Alloy

Work: Ti-6A-4V Insert: NF-DNMX120404


Cutting Conditions: $v_c = 100 \text{m/min}$, $a_0 = 0.1 \text{mm}$ f = 0.05 mm/rev Wet SUMIDIA positive type inserts are extremely good for Ti Alloy, due to high cutting edge strength and high wear resistance

Work: Ti-6A-4V Insert: NF-DNMX120404

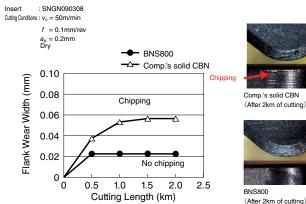
Cutting Conditions: $v_c = 100 \text{m/min}$. $a_p = 0.1 \text{mm}$ f = 0.05 mm/rev Wet ☆ SUMIDIA positive type inserts are extremely good for Ti alloy, due to high cutting edge strength and high wear resistance


(Co-based self-fluxing alloy)

Work: Ti-6AI-4V Tool: DNMA150412

Cutting Conditions: $v_c = 120 \text{m/min}$, $a_0 = 0.3 \text{mm}$ f = 0.25 mm/rev Wet ☆ Highly fracture resistant BN7000 negative insert is suitable for highefficiency machining with a large depth-of-cut and a high feed rate

Hard Facing Alloys



Whisker Reinforced Ceramic (v_o =50m/min_After 10m of cutting)

(v_c =300m/min, After 2km of cutting)

SUMIBORON Edition

Type of Insert Failure	Cause	Countermeasures
Flank Wear	Grade lacks wear resistance. Cutting speed is too fast.	Select a more wear resistant grade. (BNC2010,BN1000,BN2000) Decrease the cutting speed. Reduce the cutting speed to less than v _c =200m/min. (Higher feed rate reduces the overall tool-to-work contact time.) Use an insert with a larger relief angle.
Crater wear Breakage At Bottom of Crater	Grade lacks wear resistance. Cutting speed is too fast.	Change to a high efficiency grade. (BNC2010,BNX25,BNX20) Reduce cutting speed and increase feed rate (low-speed, high-feed cutting). Reduce the cutting speed to less than v₀=200m/min. (Higher feed rate reduces the overall tool-to-work contact time.)
Flaking	Grade lacks toughness. Back force is too high.	Select a tougher grade (e.g. BNC2020 and BN2000). Select an insert with a stronger cutting edge (Increase negative land angle and hone) If the grade has enough toughness, improve the cutting edge sharpness.
Notch Wear	· High boundary stress.	Change to a grade with a higher boundary wear resistance (e.g. BNC2010 and BN2000). Increase the cutting speed (150m/min or more). Change to "Variable Feed Rate" method, which alters the feed rate every fixed number of outputs. Increase negative land angle and hone.
Chipping at Forward Notch Position	Impact to front cutting edge is too large or too often applied.	Change to a fine-grained grade with a higher fracture resistance (e.g. BNC300 and BN350). Increase feed rates (Higher feed rates are recommended to reduce chipping.) Select an insert with a stronger cutting edge (Increase negative land angle and hone)
Chipping at Side Notch Position	Impact to side cutting edge is too large or too often applied.	Select a tougher grade. (BN350,BNC300) Reduce feed rate. Increase the side cutting angle Increase the work radius Select an insert with a stronger cutting edge (Increase negative land angle and hone)
Thermal Crack	· Thermal shock is too severe.	Completely dry condition is recommended. Select a grade with better thermal conductivity. Decrease cutting speed, depth of cut, feed rate.

Technical Guidance General Information

SI Unit Conversion Table

SI Basic Unit

Quantity as a Reference of SI Unit

Quantity	Name	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Current	Ampere	Α
Temperature	Kelvin	K
Quantity of Substance	Mol	mol
Luminous Intensity	Candela	cd

Basic Unit Provided with Unique Name and Symbol (Extracted)

	•	. ,
Quantity	Name	Symbol
Frequency	Hertz	Hz
Force	Newton	N
Pressure and Stress	Pascal	Pa
Energy, Work, and Calorie	Joule	J
Power and Efficiency	Watt	W
Voltage	Volt	V
Resistance	Ohm	Ω

SI Prefix

Prefix Showing Integral Power of 10 Combined with SI Unit

Coefficient	Name	Symbol	Coefficient	Name	Symbol	Coefficient	Name	Symbol
10 ²⁴	Yota	Υ	10³	Kilo	k	10 ⁻⁹	Nano	n
10 ²¹	Zeta	Z	10 ²	Hecto	h	10-12	Pico	р
10 ¹⁸	Exa	Е	10¹	Deca	da	10-15	Femto	f
10¹5	Peta	Р	10-1	Deci	d	10-18	Atto	a
10 ¹²	Tera	Т	10 ⁻²	Centi	С	10-21	Zepto	z
10°	Giga	G	10⁻³	Milli	m	10 ⁻²⁴	Yocto	у
10⁵	Mega	М	10 ⁻⁶	Micro	μ			

■ Principal SI Unit Conversion List (coloured portions are SI units)

Force

Stress

N	kgf		
1	1.01972 × 10 ⁻¹		
9.80665	1		

Pa (N/m²)	MPa (N/mm²)	kgf/mm²	kgf/cm²	kgf/m²
1	1 ×10 ⁻⁶	1.01972 × 10 ⁻⁷	1.01972 ×10 ⁻⁵	1.01972 × 10 ⁻¹
1 ×10 ⁶	1	1.01972 × 10 ⁻¹	1.01972×10	1.01972 ×10⁵
9.80665×10 ⁶	9.80665	1	1 ×10 ²	1 ×10 ⁶
9.80665×10 ⁴	9.80665×10 ⁻²	1 ×10 ⁻²	1	1 ×10 ⁴
9.80665	9.80665×10 ⁻⁶	1 ×10 ⁻⁶	1 ×10 ⁻⁴	1

Pressure

$1Pa = 1N/m^{2}$	$1MPa = 1N/mm^2$
------------------	------------------

Pa (N/m²)	kPa	MPa	GPa	bar	kgf/cm²	mmHg または Torr
1	1 × 10 ⁻³	1 × 10 ⁻⁶	1 × 10 ⁻⁹	1 × 10 ⁻⁵	1.01972 × 10⁻⁵	7.50062×10^{-3}
1 × 10 ³	1	1 × 10 ⁻³	1 × 10 ⁻⁶	1 × 10 ⁻²	1.01972 × 10 ⁻²	7.50062
1 × 10 ⁶	1 × 10 ³	1	1 × 10 ⁻³	1 × 10	1.01972 × 10	7.50062 × 10 ³
1 × 10°	1 × 10 ⁶	1 × 10 ³	1	1 × 10 ⁴	1.01972 × 10 ⁴	7.50062 × 10 ⁶
1 × 10 ⁵	1 × 10 ²	1 × 10 ⁻¹	1 × 10 ⁻⁴	1	1.01972	7.50062 × 10 ²
9.80665 × 10⁴	9.80665 × 10	9.80665 × 10 ⁻²	9.80665 × 10 ⁻⁵	9.80665×10 ⁻¹	1	7.35559 × 10 ²
1.33322 × 10 ²	1.33322 × 10 ⁻¹	1.33322 × 10 ⁻⁴	1.33322 × 10 ⁻⁷	1.33322 ×10⁻³	1.35951 ×10 ⁻³	1

● Work / Energy / Calorie

 $1Pa = 1N/m^2$

J	kW · h	kgf · m	kcal
1	2.77778 ×10 ⁻⁷	1.01972 × 10 ⁻¹	2.38889 × 10 ⁻⁴
3.60000 ×10 ⁶	1	3.67098 ×10⁵	8.60000 × 10 ²
9.80665	2.72407 ×10 ⁻⁶	1	2.34270 × 10 ⁻³
4.18605 ×10 ³	1.16279 ×10 ⁻³	4.26858 ×10 ²	1

Power (Efficiency and Motive Energy) / Thermal Flow

1J	= 1	١w	•	s,1J	=	1N	•	m

917					
W	kgf ⋅ m/s	PS	kcal/h		
1	1.01972 ×10 ⁻¹	1.35962×10^{-3}	8.60000 × 10 ⁻¹		
1 ×10 ³	1.01972 ×10 ²	1.35962	8.60000 ×10 ²		
9.80665	1	1.33333 × 10 ⁻²	8.43371		
7.355 ×10 ²	7.5 ×10	1	6.32529 ×10 ²		
1.16279	1.18572 ×10 ⁻¹	1.58095 × 10 ⁻³	1		

Specific Heat

J/s, PS: Horsepo
,

oisepowei	Rotating	Speed	l
			П

opodino riodi			
J/(kg ⋅ K)	1kcal (kg·°C)cal/ (g·°C)		
1	2.38889 ×10 ⁻⁴		
4.18605 ×10 ³	1		

• momaroundy				
W/(m·K)	kcal/(h·m·°C)			
1	8.60000 ×10 ⁻¹			
1.16279	1			

min ⁻¹	rpm
1	1
	1 .

1min⁻¹ = 1rpm

Carbon Steels

JIS	AISI	DIN
S10C	1010	C10
S15C	1015	C15
S20C	1020	C22
S25C	1025	C25
S30C	1030	C30
S35C	1035	C35
S40C	1040	C40
S45C	1045	C45
S50C	1049	C50
S55C	1055	C55

Ni-Cr-Mo Steels

SNCM220	8620	21NiCrMo2
SNCM240	8640	_
SNCM415	_	_
SNCM420	4320	_
SNCM439	4340	_
SNCM447	_	_

Cr Steels

SCr415	_	_
SCr420	5120	_
SCr430	5130	34Cr4
SCr435	5132	37Cr4
SCr440	5140	41Cr4
SCr445	5147	_

Cr-Mo Steels

SCM415	_	_
SCM420	_	_
SCM430	4131	_
SCM435	4137	34CrMo4
SCM440	4140	42CrMo4
SCM445	4145	_

• Mn Steels and Mn-Cr Steels for Structurer Use

SMn420	1522	_
SMn433	1534	_
SMn438	1541	_
SMn443	1541	_
SMnC420	_	_
SMnC443	_	_

Carbon Tool Steels

Oarbort tool olects			
_			
W1-11 ¹ / ₂			
W1-10	C105W1		
W1-9			
W1-8	C80W1		
_	C80W1		
	C70W2		
	— W1-11 ¹ / ₂ W1-10 W1-9		

High Seed Steels

JIS	AISI	DIN
SKH2	T1	_
SKH3	T4	S18-1-2-5
SKH10	T15	S12-1-4-5
SKH51	M2	S6-5-2
SKH52	M3-1	_
SKH53	M3-2	S6-5-3
SKH54	M4	_
SKH56	M36	_

Alloy Tool Steels

• · ····· , · · · · · · · · · · · · · · · · · · ·		
SKS11	F2	_
SKS51	L6	_
SKS43	W2-9 ¹ / ₂	_
SKS44	W2-8	_
SKD1	D3	X210Cr12
SKD11	D2	_

Grey Cast Iron

· , - · · · ·		
FC100	No 20B	GG-10
FC150	No 25B	GG-15
FC200	No 30B	GG-20
FC250	No 35B	GG-25
FC300	No 45B	GG-30
FC350	No 50B	GG-35

Nodular Cast Iron

FCD400	60-40-18	GGG-40
FCD450	_	GGG-40.3
FCD500	80-55-06	GGG-50
FCD600	_	GGG-60
FCD700	100-70-03	GGG-70

Ferritic Stainless Steels

SUS405	405	X10CrAl13
SUS429	429	_
SUS430	430	X6Cr17
SUS430F	430F	X7CrMo18
SUS434	434	X6CrMo17 1

Martensitic Stainless Steels

Widi teristile Stairliess Steels		
403		
410	X10Cr13	
416	_	
420	X20Cr13	
420F	_	
431	X20CrNi17 2	
440A	_	
440B	_	
440C	_	
	403 410 416 420 420F 431 440A 440B	

Austenitic Stainless Steels

Tradicinio Stanioso Stocio			
AISI	DIN		
201	_		
202	_		
301	X12CrNi17 7		
302	_		
302B	_		
303	X10CrNiS18 9		
303Se	_		
304	X5CrNiS18 10		
304L	X2CrNi19 11		
304N	_		
305	X5CrNi18 12		
308	_		
309S	_		
310S	_		
316	X5CrMo17 12 2		
316L	X2CrNiMo17 13 2		
316N	_		
317	_		
317L	X2CrNiMo18 16 4		
321	X6CrNiTi18 10		
347	X6CrNiNb18 10		
384	_		
	201 202 301 202 301 302 302B 303 303Se 304 304L 304N 305 308 309S 310S 316 316L 316N 317 317L 321 347		

Heat Resisting Steels

• Hoat Hooloting Stools		
SUH31	_	_
SUH35	_	_
SUH36	_	X53CrMnNi21 9
SUH37	_	_
SUH38	_	_
SUH309	309	_
SUH310	310	CrNi2520
SUH330	N08330	_

Ferritic Heat Resisting Steels

SUH21	_	CrAl1205
SUH409	409	X6CrTi12
SUH446	446	_

Martensitic Heat Resisting Steels		
SUH1	_	X45CrSi9 3
SUH3	_	_
SUH4	_	_
SUH11	_	_
SUH600	_	_

References

■ Steel and Non-Ferrous Metal Symbols Chart

Classifications and Symbols of Steels

Ť		lassifications and Symbols of S) (CC) S	T
Cla	ass	Material	Symbol	Code Description
-	GIS	Rolled Steels for welded structures	SM	"M" for "Marine"-Usually used in welded marine structures
Ober 10th 17th 17th	2015	Re-rolled Steels	SRB	"R" for "Re-rolled" and "B" for "Bar"
1	ncinic	Rolled Steels for general structures	SS	S for "Steel" and for "Structure"
t	3	Light gauge sections for general structures	SSC	C for "Cold"
Steel S	Sheets	Hot rolled mild steel sheets / plates in coil form	SPH	P for "Plate" and "H" for "Hot"
		Carbon steel tubes for piping	SGP	"GP" for "Gas Pipe"
		Carbon steel tubes for boiler and heat exchangers	STB	"T" for "Tube" and "B" for "Boiler"
		Seamless steel tubes for high pressure gas cylinders	STH	"H" for "High Pressure"
١,		Carbon steel tubes for general structures	STK	"K" for "Kozo"-Japanese word meaning "structure"
	200	Carbon steel tubes for machine structural uses	STKM	"M" for "Machine"
F	<u>بر</u>	Alloy steel tubes for structures	STKS	"S" for "Special"
odi T loota		Alloy steel tubes for piping	STPA	"P" for "Piping" and "A" for "Alloy"
		Carbon steel tubes for pressure piping	STPG	"G" for "General"
		Carbon steel tubes for high temperature piping	STPT	"T" for "Temperatures"
		Carbon steel tubes for high pressure piping	STS	"S" after "SP" is abbreviation for "Special"
		Stainless steel tubes for piping	SUS-TP	"T" for "Tube" and "P" for "Piping"
Š	IIES	Carbon steels for machine structural uses	SxxC	"C" for "Carbon"
Source Original Charles	ncır	Aluminium Chromium Molybdenum steels	SACM	"A" for "AI", "C" for "Cr" and "M" for "Mo"
j	10 a	Chromium Molybdenum steels	SCM	"C" for "Cr" and "M" for "Mo"
2.5		Chromium steels	SCr	"Cr" for "Chromium"
2	Ma	Nickel Chromium steels	SNC	"N" for "Nickel" and "C"for "Chromium"
1	2	Nickel Chromium Molybdenum steels	SNCM	"M" for "Molybdenum"
ţ	SIC.	Manganese steels for structural use Manganese Chromium steels	SMn SMnC	"Mn" for "Manganese" "C" for "Chromium"
	sle	Carbon tool steels	SK	"K" for "Kogu"-Japanese word meaning "tool"
	Steel	Hollow drill steels	SKC	"C" for "Chisel"
	<u>00</u>	Alloy tool steel	SKS SKD SKT	S for "Special" D for "Die" T for "Tanzo"-Japanese word for "forging"
sls	I	High speed tool steels	SKH	"H" for "High speed"
Steel	Steels	Free cutting sulphuric steels	SUM	"M" for "Machinability"
	ss St	High Carbon Chromium bearing steels	SUJ	"J" for "Jikuuke"-Japanese word meaning "bearing"
pecial	inless	Spring steels	SUP	"P" for "Spring"
	Stain	Stainless Steels	SUS	"S" after "SU" is abbreviation for "Stainless"
	t Steels	Heat-resistant steels	SUH	"U" for "Special Usage" and "H" for "Heat"
	esistant	Heat-resistant steel bars	SUH-B	"B" for "Bar"
	Heat-resist	Heat-resistant steels sheets	SUHP	"P" for "Plate"
2	2012	Carbon steel forgings for general use	SF	"F" for "Forging"
Forgod Ctools	יי סוב	Carbon steel booms and billets for forgings	SFB	"B" for "Billet"
2	ige.	Chromium Molybdenum steel forgings	SFCM	"C" for "Chromium" and "M" for "Molybdenum"
្រ	2	Nickel Chromium Molybdenum steel forgings	SFNCM	"N" for "Nickel"
		Grey cast irons	FC	"F" for "Ferrous" and "C" for "Casting"
oucil too	200	Spherical graphite / Ductile cast irons	FCD	"D" for "Ductile"
<u> </u>	2	Blackheart malleable cast irons	FCMB	"M" for "Malleable" and "B" for "Black"
Ç	ק מ	Whiteheart malleable cast irons	FCMW	"W" for "White"
		Pearlite malleable cast irons	FCMP	"P" for "Pearlite"
-	2	Carbon cast steels	SC	"C" for "Casting"
t d	ast S	Stainless cast steels	SCS	"S" for "Stainless"
4		Heat-resistant cast steels	SCH	"H" for "Heat"
(High Manganese cast steels	SCMnH	"Mn" for "Manganese" and "H" for "High"

Non-Ferrous Metals

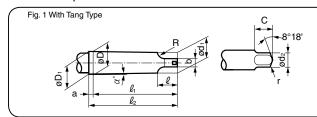
Class	Material	Symbol
)ys		CxxxxP
Allo	Copper and Copper alloys - Sheets, plates and strips	CxxxxPP
pper	piaco ana ompo	CxxxxR
8		CxxxxBD
and	Copper and Copper alloys - Welded	CxxxxBDS
pper	pipes and tubes	CxxxxBE
S		CxxxxBF
oys	Aluminium and Al alloys - Sheets,	AxxxxP
n All	plates and strips	AxxxxPC
iniur		AxxxxBE
m	Aluminium and Al alloys -Rods, bars, and wires	AxxxxBD
nd A	-i lous, bais, and wires	AxxxxW
E a	Aluminium and Al alloys-Extruded shapes	AxxxxS
niniu	Alternative and Allelland familiars	AxxxxFD
Alun	Aluminium and Al alloys forgings	AxxxxFH
Magnesium Aluminium and Aluminium Alloys Copper and Copper Alloys	Magnesium alloy sheets and plates	MP
kel	Nickel-copper alloy sheets and plates Nickel-copper alloy rods and bars	NCuP
Ŗĕ	Nickel-copper alloy rods and bars	NCuB
Wrought Titanium	Titanium rods and bars	ТВ
	Brass castings	YBsCx
	High strength Brass castings	HBsCx
	Bronze castings	BCx
	Phosphorus Bronze castings	PBCx
	Aluminium Bronze castings	AIBCx
gs	Aluminium alloy castings	AC
Sastings	Magnesium alloy castings	MC
Sa	Zinc alloy die castings	ZDCx
	Aluminium alloy die castings	ADC
	Magnesium alloy die castings	MDC
	White metals	WJ
	Aluminium alloy castings for bearings	AJ
	Copper-Lead alloy castings for bearings	KJ

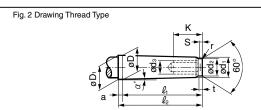
■ Hardness Scale Comparison Chart

Approximate Corresponding Values for Steel Hardness on the Brinell Scale

Approx	imate Corr	esponding	Values for S	Steel Hard	ness on t	he Brin	ell Scale
		Rockwell	Hardness				
Brinell Hardness 3,000kgf	A Scale 60kgf brale brale	B Scale 100kgf 1/10in Ball	C Scale 150kgf brale brale	D Scale 100kgf brale brale	Vickers Hardness 50kgf	Shore Hardness	Traverse Rupture Strength (GPa)
НВ	HRA	HRB	HRC	HRD	HV	HS	
	85.6	_	68.0	76.9	940	97	_
_	85.3	_	67.5	76.5	920	96	
_	85.0	_	67.0	76.1	900	95	<u> </u>
767	84.7	_	66.4	75.7	880	93	_
757	84.4	_	65.9	75.3	860	92	
745	84.1	_	65.3	74.8	840	91	_
733	83.8	_	64.7	74.3	820	90	_
722	83.4	_	64.0	73.8	800	88	_
712	_	_	_	_	_	_	_
710	83.0	_	63.3	73.3	780	87	_
698	82.6	_	62.5	72.6	760	86	_
684	82.2	_	61.8	72.1	740	_	
682	82.2	_	61.7	72.0	737	84	_
670	81.8	_	61.0	71.5	720	83	_
656	81.3	_	60.1	70.8	700	_	_
653	81.2	_	60.0	70.7	697	81	_
647	81.1	<u> </u>	59.7	70.5	690	_	—
638	80.8	_	59.2	70.1	680	80	<u> </u>
630	80.6	<u> </u>	58.8	69.8	670	_	—
627	80.5	_	58.7	69.7	667	79	—
601	79.8	_	57.3	68.7	640	77	_
578	79.1	<u> </u>	56.0	67.7	615	75	—
555	78.4	_	54.7	66.7	591	73	2.06
534	77.8	_	53.5	65.8	569	71	1.98
514	76.9	_	52.1	64.7	547	70	1.89
495	76.3	_	51.0	63.8	528	68	1.82
477	75.6	_	49.6	62.7	508	66	1.73
461	74.9	_	48.5	61.7	491	65	1.67
444	74.2		47.1	60.8	472	63	1.59
429	73.4		45.7	59.7	455	61	1.51
415	72.8		44.5	58.8	440	59	1.46
401	72.0		43.1	57.8	425	58	1.39
388	71.4		41.8	56.8	410	56	1.33
375	70.6		40.4	55.7	396	54	1.26
363	70.0		39.1	54.6	383	52	1.22
352	69.3	(110.0)	37.9	53.8	372	51	1.18
341	68.7	(109.0)	36.6	52.8	360	50	1.13
331	68.1	(108.5)	35.5	51.9	350	48	1.10

		Rockwell	Hardness				
Brinell Hardness 3,000kgf	A Scale 60kgf brale brale	B Scale 100kgf 1/10in Ball	C Scale 150kgf brale brale HRC	D Scale 100kgf brale brale	Vickers Hardness 50kgf	Shore Hardness	Traverse Rupture Strength (GPa)
HB	HRA	HRB		HRD	HV		
321	67.5	(108.0)	34.3	50.1	339	47	1.06
311	66.9	(107.5)	33.1	50.0	328	46	1.03
302	66.3	(107.0)	32.1	49.3	319	45	1.01
293	65.7	(106.0)	30.9	48.3	309	43	0.97
285	65.3	(105.5)	29.9	47.6	301		0.95
277	64.6	(104.5)	28.8	46.7	292	41	0.92
269	64.1	(104.0)	27.6	45.9	284	40	0.89
262	63.6	(103.0)	26.6	45.0	276	39	0.87
255	63.0	(102.0)	25.4	44.2	269	38	0.84
248	62.5	(101.0)	24.2	43.2	261	37	0.82
241	61.8	100.0	22.8	42.0	253	36	0.80
235	61.4	99.0	21.7	41.4	247	35	0.78
229	60.8	98.2	20.5	40.5	241	34	0.76
223	—	97.3	(18.8)	—	234	—	—
217		96.4	(17.5)		228	33	0.73
212	—	95.5	(16.0)	—	222		0.71
207		94.6	(15.2)		218	32	0.69
201	·····	93.8	(13.8)		212	31	0.68
197		92.8	(12.7)		207	30	0.66
192		91.9	(11.5)		202	29	0.64
					ļ		
187		90.7	(10.0)	<u> </u>	196		0.62
183	<u> </u>	90.0	(9.0)		192	28	0.62
179	<u> </u>	89.0	(8.0)	<u> </u>	188	27	0.60
174	<u> </u>	87.8	(6.4)	-	182	<u>—</u>	0.59
170	<u> </u>	86.8	(5.4)	<u> </u>	178	26	0.57
167		86.0	(4.4)	<u> </u>	175	<u> </u>	0.56
163	_	85.0	(3.3)	_	171	25	0.55
156		82.9	(0.9)	<u> </u>	163		0.52
149		80.8	_	_	156	23	0.50
143	_	78.7	_	_	150	22	0.49
137	_	76.4	_	_	143	21	0.46
131	_	74.0	—	—	137	_	0.45
126	_	72.0	<u> </u>	_	132	20	0.43
121	—	69.8	—	—	127	19	0.41
116	—	67.6	—	_	122	18	0.40
					ļ		


Figures within the () are not commonly used
 Rockwell A, C and D scales utilise a diamond brale

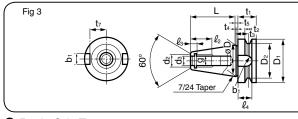

³⁾ This chart was taken from the JIS Iron and Steel Handbook (1980)

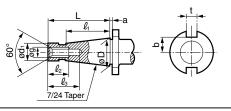
References

Standard of Tapers

Morse Taper

(U	Ini	ts:	m	n


Morse			Taper			Tap	per					Ta	ng			
Taper Number	Ta	per ⁽¹⁾	Angle (α°)	D	а	D ₁ ⁽²⁾ (Estimated)	d1 ⁽²⁾ (Estimated)	ℓ₁ (Max)	ℓ ₂ (Max)	d ₂ (Max)	b	C (Max)	e (Max)	R	r	Fig
0	1 19.212	0.05205	1°29'27"	9.045	3	9.2	6.1	56.5	59.5	6.0	3.9	6.5	10.5	4	1	
1	1 20.047	0.04988	1°25'43"	12.065	3.5	12.2	9.0	62.0	65.5	8.7	5.2	8.5	13.5	5	1.2	
2	1 20.020	0.04995	1°25'50"	17.780	5	18.0	14.0	75.0	80.0	13.5	6.3	10	16	6	1.6	
3	1 19.922	0.05020	1°26'16"	23.825	5	24.1	19.1	94.0	99.0	18.5	7.9	13	20	7	2	
4	1 19.245	0.05194	1°29'15"	31.267	6.5	31.6	25.2	117.5	124.0	24.5	11.9	16	24	8	2.5	
5	1 19.002	0.05263	1°30'26"	44.399	6.5	44.7	36.5	149.5	156.0	35.7	15.9	19	29	10	3	
6	1 19.180	0.05214	1°29'36"	63.348	8	63.8	52.4	210.0	218.0	51.0	19.0	27	40	13	4]
7	1 19.231	0.05200	1°29'22"	83.058	10	83.6	68.2	286.0	296.0	66.8	28.6	35	54	19	5	


Morse			Taper			Ta _l	oer					Tang			
Taper Number	Ta _l	per ⁽¹⁾	Angle (α°)	D	а	D ₁ ⁽²⁾ (Estimated)	d ₁ ⁽²⁾ (Estimated)	ℓ₁ (Max)	ℓ₂ (Max)	d ₂ (Max)	dз	K (Min)	t (Max)	r	Fig
0	1 19.212	0.05205	1°29'27"	9.045	3	9.2	6.4	50	53	6	_		4	0.2	
1	<u>1</u> 20.047	0.04988	1°25'43"	12.065	3.5	12.2	9.4	53.5	57	9	M 6	16	5	0.2	
2	1 20.020	0.04995	1°25'50"	17.780	5	18.0	14.6	64	69	14	M10	24	5	0.2	
3	1 19.922	0.05020	1°26'16"	23.825	5	24.1	19.8	81	86	19	M12	28	7	0.6	
4	1 19.254	0.05194	1°29'15"	31.267	6.5	31.6	25.9	102.5	109	25	M16	32	9	1	-
5	1 19.002	0.05263	1°30'26"	44.399	6.5	44.7	37.6	129.5	136	35.7	M20	40	9	2.5	
6	1 19.180	0.05214	1°29'36"	63.348	8	63.8	53.9	182	190	51	M24	50	12	4	
7	1 19.231	0.05200	1°29'22"	83.058	10	83.6	70.0	250	260	65	M33	80	18.5	5	

⁽¹⁾ The fractional values are the taper standards.

Bottle Grip Taper

American Standard Taper (National Taper) Fig 4 .

Bottle Grip Taper

(Units: mm)

Taper No.	D (Standard)	D ₁	D ₂	t ₁	t 2	tз	t4	t 5	d ₂	d з	L	ℓ_2	ℓ_3	ℓ_4	g	b ₁	t ₇	Fig
BT30	31.75	46	38	20	8	13.6	2	2	14	12.5	48.4	24	7	17	M12	16.1	16.3	
BT35	38.10	53	43	22	10	14.6	2	2	14	12.5	56.4	24	7	20	M12	16.1	19.6	
BT40	44.45	63	53	25	10	16.6	2	2	19	17	65.4	30	8	21	M16	16.1	22.6	,
BT45	57.15	85	73	30	12	21.2	3	3	23	21	82.8	36	9	26	M20	19.3	29.1	3
BT50	69.85	100	85	35	15	23.2	3	3	27	25	101.8	45	11	31	M24	25.7	35.4	
BT60	107.95	155	135	45	20	28.2	3	3	33	31	161.8	56	12	34	M30	25.7	60.1	

American Standard Taper (National Taper)

(Units: mm)

												(0	
Taper No.	Nominal Diameter	D	C	11	L	ℓ_1 (Min)	$\ell_2(Min)$	ℓ_3 (Min)	g	а	t	b	Fig
30	1 ¹ / _{4"}	31.750	17.4	-0.29 -0.36	68.4	48.4	24	34	1/2"	1.6	15.9	16	
40	1 ³ / _{4"}	44.450	25.3	-0.30 -0.384	93.4	65.4	32	43	⁵ / _{8"}	1.6	15.9	22.5	1 ,
50	23/4"	69.850	39.6	-0.31 -0.41	126.8	101.8	47	62	1"	3.2	25.4	35	1 4
60	41/4"	107.950	60.2	-0.34 -0.46	206.8	161.8	59	76	1 ¹ / _{4"}	3.2	25.4	60	

⁽²⁾ Diameters (D1) and (d1) are calculated from the values of (D) and other values of the taper. (values are rounded up to one decimal place). Remarks 1. Tapers are measured using JIS B 3301 ring gauges. At least 75% must be correct.

 $^{2. \, \}text{Screws must have metric coarse screw thread as per JIS B 0205, and 3rd grade precision as per JIS B 0209.} \\$

Dimensional Tolerances for Regularly Used Shaft Fits

		ens	iona	ai To	olera	ance	es fo	or R	egu	larly	y Us	ed	Sha	π Fi	ts			_														
Dime	ise Insion Im)												Tole	ranc	e Zo	ne C	lass	of S	haft											Uı	nits µ	ım
More than	Мах.	b9	с9	d8	d9	е7	е8	е9	f6	f7	f8	g5	g6	h5	h6	h7	h8	h9	js5	js6	js7	k5	k6	m5	m6	n6	p6	r6	s6	t6	u6	х6
-	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24			-6 -12	-6 -16		-2 -6	-2 -8	0 -4	0 -6	0 -10	0 -14	0 -25	±2	±3	±5	+4 0	+6 0	+6 +2	+8 +2	+10 +4	+12 +6	+16 +10				+26 +20
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32		-20 -50	-10 -18				-4 -12	0 -5	0 -8	0 -12	0 -18	0 -30	±2.5	±4	±6	+6 +1	+9 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +19			+36 +28
6	10	-150 -186	-80 -116	-40 -62	-40 -76			-25 -61	-13 -22	-13 -28			-5 -14	0 -6	0	0 -15	0 -22	0 -36	±3	±4.5	±7.5	+7 +1	+10 +1	+12 +6	+15 +6	+19 +10	+24 +15	+28 +19				+43 +34
10	14	-150	-95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0	0	0				+9	+12	+15	+18	+23	+29	+34	+39		+44	+51 +40
14	18		-138		-93				-27	-34			-17	-8	-11	-18	-27	-43	±4	±5.5	±9	+1	+1	+7	+7	+12	+18				+33	+56 +45
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	-7	-7	0	0	0	0	0				+11	+15	+17	+21	+28	+35	+41	+48	_	+54 +41	
24	30		-162		-117	-61	-73		-33				-20	-9	-13	-21	-33	-52	±4.5	±6.5	±10.5	+2	+2	+8	+8	+15						+77 +64
30	40	-170 -232	-120 -182	-80	-80	-50	-50	-50	-25	-25	-25	-9	-9	0	0	0	0	0				+13	+18	+20	+25	+33	+42	+50	+59	+64 +48		
40	50	-180 -242	-130 -192		-142			-112	-41	-50			-25	-11	-16	-25	-39	-62	±5.5	±8	±12.5	+2	+2	+9	+9	+17	+26			_		_
50	65	-190 -264		-100	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0	0	0				+15	+21	+24	+30	+39	+51	+60 +41	+72 +53		+106 +87	
65	80	-200 -274	-150 -224		-174			-134	-49				-29	-13		-30		-74	±6.5	±9.5	±15	+2	+2	+11	+11		+32	+62 +43	+78 +59		+121 +102	
80	100		-170 -257	-120	-120	-72	-72	-72	-36	-36	-36	-12	-12	0	0	0	0	0				+18	+25	+28	+35	+45	+59	+73 +51	+93 +71	+113 +91	+146 +124	
100	120		-180 -267	-174	-207	-107	-126	-159	-58	-71			-34	-15			-54	-87	±7.5	±11	±17.5	+3	+3	+13	+13	+23	+37	+76 +54		+126 +104		
120	140	-260 -360	-200 -300																										+117 +92	+147 +122		
140	160				-145 -245			-85 -185			-43 -106		-14 -39	0 -18	0 -25	0 -40	0 -63	0 -100	±9	±12.5	±20	+21 +3	+28 +3	+33 +15	+40 +15	+52 +27	+68 +43			+159 +134		_
160	180	-310 -410	-230 -330																										+133 +108	+171 +146		
180	200		-240 -355																									+106 +77	+151 +122			
200	225							-100 -215			-50 -122			0 -20	0 -29	0 -46	0 -72	0 -115	±10	±14.5	±23	+24 +4	+33 +4	+37 +17	+46 +17	+60 +31	+79 +50		+159 +130	-	-	_
225	250	-420 -535	-280 -395																										+169 +140			
250	280	-480 -610	-300 -430	-190	-190	-110	-110	-110	-56	-56	-56	-17	-17	0	0	0	0	0	lar-	140		+27	+36	+43	+52	+66	+88	+126 +94				
280	315	-540 -670	-330 -460		-320					-108	-137		-49	-23		-52	-81	-130	±11.5	±16	±26	+4		+20			+56	+130 +98	_	_	_	
315	355	-600 -740		-210	-210	-125	-125	-125	-62	-62	-62	-18	-18	0	0	0	0	0	146-	140		+29	+40	+46	+57	+73	+98	+144 +108				
355	400		-400 -540		-350						-151			-25		-57	-89	-140	±12.5	±18	±28.5	+4		+21			+62	+150 +114	_	_		
400	450	-760 -915	-440 -595	-230	-230	-135	-135	-135	-68	-68	-68	-20	-20	0	0	0	0	0	±10.5	±00	±04.5	+32	+45	+50	+63	+80	+108	+166 +126				
450	500		-480 -635	-327	-385	-198	-232	-290	-108	-131	-165	-47	-60	-27		-63	-97	-155	£13.5	±20	±31.5	+32 +5	+5	+50 +23	+23	+40	+68	+172 +132	_		_	

References

- Dimensional Tolerances for Regularly Used Fits [Taken from JIS B 0401 (1999)]
- Dimensional Tolerances for Regularly Used Fits

Ba Dime	se nsion	231	-11	~1 I	-10	- 411			. 10	341	arly	J.				ce Z	one'	Cla	ss o	f Ho	le												Un	its µ	m
``		B10 C	29	C10	D8	D9	D10	E 7	E8	E 9	F6	F7	F8	G6	G7	Н6	Н7	Н8	Н9	H10	JS6	JS7	K6	K7	М6	М7	N6	N7	P6	P 7	R7	S7	T7	U7	X7
-	3			+100 +60	+34 +20										+12 +2			+14 0	+25 0	+40	±3	±5	0 -6	0 -10	-2 -8	-2 -12	-4 -10	-4 -14	-6 -12	-6 -16		-14 -24	-	-18 -28	
3	6			+118 +70	+48 +30									+12 +4	+16 +4			+18 0		+48 0	±4	±6	+2 -6	+3 -9	-1 -9	0 -12	-5 -13	-4 -16	-9 -17	-8 -20		-15 -27	-	-19 -31	-24 -36
6	10		116 +80	+138 +80	+62 +40										+20 +5			+22 0		+58 0	±4.5	±7.5	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19		-9 -24		-17 -32	-	-22 -37	-28 -43
10	14	+220 +	138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18	+27	+43	+70			+2	+6	-4	0	-9	-5	-15	-11	-16	-21		-26	-33 -51
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0	0	0	+70 0	 ±5.5	Ξ9	-9	-12	-15	-18	-20	-23	-26	-29	-34	-39		-44	-38 -56
18	24	+244 +	162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21	+33	+52	+84	105	1405	+2	+6	-4	0	-11	-7	-18	-14	-20	-27	-	-33 -54	-46 -67
24	30	+160 +	110	+110	+65	+65	+65	+40	+40	+40					+7				0	0	≖ 6.5	±10.5	-11	+6 -15	-17	-21		-28		-35	-41	-48	-33 -54	-40 -61	-56 -77
30	40	+270 + +170 +		1120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25	+39	+62	+100			+3	+7	-4	0	-12	-8	-21	-17	-25	-34	-39 -64		
40	50	+280 + +180 +			+80	+80	+80	+50		+50		+25	+25	+9	+9	0	0	0	0	0	±8	±12.5	-13	-18	-20	-25		-33		-42		-59	-45 -70		
50	65	+310 + +190 +	140	+140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30	+46	+74	+120			+4	+9	-5	0	-14	-9	-26	-21	-30 -60	-42 -72		-76 -106	
65	80	+320 + +200 +	224 150	+270 +150	+100	+174	+100	+60	+60			+30	+30	+10	+10	0	0	0	0	0	±9.5	±15	-15		-24	-30	-33	-39	-45	-51	-32 -62	-48 -78		-91 -121	
80	100		- 1	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35	+54 0	+87	+140		1475	+4	+10	-6	0	-16	-10	-30	-24	-38 -73	- 1	-78 -113		
100	120	+380 + +240 +		+320	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0	0	0	0	I 11	±17.5	-18	-25		-35	-38	-45	-52	-59	-41 -76	-66 -101	-91 -126		
120	140			+360 +200																											-48 -88	-77 -117	-107 -147		
140	160	+440 + +280 +							+148 +85			+83 +43	+106 +43	+39 +14	+54 +14	+25 0	+40 0	+63 0	+100 0	+160 0	±12.5	±20		+12 -28	-8 -33	0 -40	-20 -45		-36 -61	-28 -68			-119 -159	_	-
160	180	+470 + +310 +		+390 +230																											-53 -93	-93 -133	-131 -171		
180	200	+525 + +340 +	355 240	+425 +240																											-60 -106	-105 -151			
200	225	+565 + +380 +							+172 +100		+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29 0	+46 0	+72 0	+115 0	+185 0	±14.5	±23	+5 -24	+13 -33	-8 -37		-22 -51			-33 -79	-63 -109	-113 -159	-	_	-
225	250	+605 + +420 +		+465 +280																											-67 -113	-123 -169			
250	280	+690 + +480 +		200	+271	+320	+400	+162	+191	+240	+88	+108	+137	+49	+69	+32	+52	+81	+130	+210			+5	+16	-9	0	-25	-14	-47	-36	-74 -126				
280	315	+750 + +540 +		+540					+110		+56	+56	+56	+17	+17	0	0	+81 0	0	0	 116	±26	-27	-36		-52	-57			-88	-78 -130			_	
315	355	+830 + +600 +		. 000	+299	+350	+440	+182	+214	+265	+98	+119	+151	+54	+75	+36	+57	+89	+140	+230		±00 =	+7	+17	-10	0	-26	-16	-51	-41	-87 -144				
355	400	+910 + +680 +		+630					+125			+62	+62	+18	+18	0	0	0	0	0	⊥ IQ	1.28.5	-29	-40		-57		-73		-98	-93 -150				
400	450	+1010 + +760 +		+440	+327	+385	+480	+198	+232	+290	+108 +68	+131	+165	+60	+83	+40	+63	+97	+155	+250	+00	+04 5	+8	+18	-10	0	-27	-17	-55	-45	-103 -166				
450	500	+1090 + +840 +		+/30	+230	+230	+230	+135	+135	+135	+68	+68	+68	+20	+20	Ó	0	0	0	0	±20	±31.5	-32	-45	-50	-63	-67	-80	-95	-108	-109 -172			_	

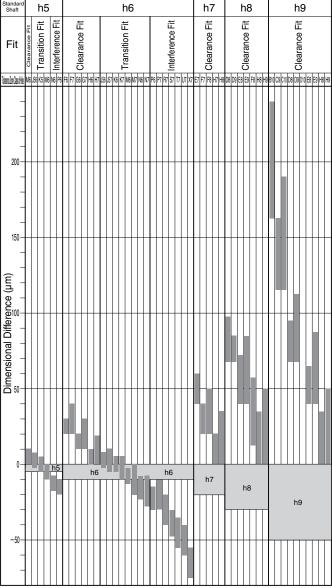
- Dimensional Tolerances and Fits [Taken from JIS B 0401 (1999]
- Standard Hole Fit for Regular Use

Standard					-	Tole	ran	ce Z	Zone	e Cla	ass c	of Sha	aft				
Hole		С	lea	rand	ce F	it		Trar	sitio	n Fit		Inte	erfere	ence	e Fi	t	
H6						g5	h5	js5	k5	m5							
					f6	g6	h6	js6	k6	m6	n6*	p6*					
H7					f6	g6	h6	js6	k6	m6	n6	p6*	r6*	s6	t6	u6	x6
'''				е7	f7		h7	js7									
					f7		h7										
H8				e8	f8		h8										
			d9	е9													
H9			d8	e8			h8										
119		с9	d9	е9			h9										
H10	b9	с9	d9														

Note: These fittings produce exceptions depending on dimension category.

Standard Shaft Fit for Regular Use

Standard						Tole	ran	ce Z	Zone	e Cl	ass o	f Hole)				
Shaft		С	lea	rand	ce F	it		Trar	sitio	n Fit		Inte	fere	ence	e Fi	t	
h5							H6	JS6	K6	М6	N6*	P6					
h6					F6	G6	H6	JS6	K6	M6	N6	P6*					
110					F7	G7	H7	JS7	K7	М7	N7	P7*	R7	S7	T7	U7	X7
h7				E7	F7		H7										
"/					F8		Н8										
h8			D8	E8	F8		H8										
118			D9	E9			H9										
			D8	E8			H8										
h9		C9	D9	E9			H9										
	B10	C10	D10														


Note: These fittings produce exceptions depending on dimension category.

Interrelationship of Tolerance Zones for Regularly Used Standard Hole Fits

	T		1	es ioi negulariy	1		1
Standard Hole		H6		H7	H8	H9	H10
Fit	Clearance Fit	Transition Fit Interference Fit	Sliding	Driving Press Strong Press	Clearance Fit	Clearance Fit	Clearance Fit
Tolerance Zone Class of Shaf	f6 g5 g6 h5 h6	js5 js6k5 k6 m5m6 n6 p6	e7 f6 f7 g6 h6 h7	js6js7k6m6n6p6 r6 s6 t6 u6x6	d9e8e9f7f8h7h8	c9d8d9g8le9h8h9	b9 c9 d9
- - - 50 -							
Dimensional Difference (µm)	H6		H7		H8	H9	H10
Dimensiona	-						
- - - 150 -	-						
- - - 200 -	-						
-	-						

Note: The above table is for standard dimensions of more than 18 mm and less than or equal to 30 mm.

Interrelationship of Tolerance Zones for Regularly Used Standard Shaft Fits

Note: The above table is for standard dimensions of more than 18 mm and less than or equal to 30 mm.

■ Finished Surface Roughness

Types and Definitions of Typical Surface Roughness

Types	Symbol	Descriptive Figure	
Maximum Height	-1) Rz	Method of Determination This is the value expressed in micrometers (µm), obtained by extracting from the roughness curve a segment of the reference length in the direction of the mean line and measuring the distance from the d eepest valley to the highest peak of the extracted segment in the direction of the longitudinal magnification of that roughness curve. Remarks: When obtaining Rz, care must be taken to extract a segment of the reference length from a portion having no unusually high peaks and deep valleys as they are considered as flaws.	
Calculated Roughness	Ra	This is the value expressed in micrometers (µm), obtained by extracting from the roughness curve a segment of the reference length in the direction of the mean line, plotting a roughness curve of y = f(x) with the X-axis set in the direction and the Y-axis set in the direction of the extracted segment, and using the following formula.	$Ra = \frac{1}{\ell} \int_0^{\ell} \{f(x)\} dx$
Ten-point Mean Roughness	*2) Rzjis	This is the value expressed in micrometers (µm), obtained by extracting from the roughness curve a segment of the reference length in the direction of the mean line, measuring the heights of the highest to 5th highest peaks (Yp) as well as the heights of the deepest to 5th deepest valleys (Yv) in the direction of the longitudinal magnification of that mean line of the that roughness curve, and calculating the sum of the mean of the absolute values of Yp and that of Yv.	Rzuse (Ypt+Yps+Yps+Yps+Yps+Yvs+Yvs+Yvs+Yvs+Yvs)

Designated values of the above types of surface roughness, standard reference length values and the triangular symbol classifications are shown on the table on the right.

Relationship with Triangular Symbols

Trotatorionip Wat mangalar Symbolo								
Designated Values for *1) Rz	Designated Values for Ra	Designated Values for *2) RzJIS	Standard Reference Length Values, (mm)	Triangular Symbols				
(0.05) 0.1 0.2 0.4	(0.012) 0.025 0.05 0.10	(0.05) 0.1 0.2 0.4	0.25	VVVV				
1.6 3.2 6.3	0.40 0.80 1.6	1.6 3.2 6.3	0.8					
12.5 (18) 25	3.2 6.3	12.5 (18) 25	2.5	\vee				
(35) 50 (70) 100	12.5 25	(35) 50 (70) 100	8	∇				
(140) 200 (280) 400 (560)	(50) (100)	(140) 200 (280) 400 (560)	_	_				

Remarks: The designated values in the brackets do not apply unless otherwise stated.

^{*} Due to the revision of JIS in 1994, the finishing symbols, triangular (\bigtriangledown) and wavy (~) symbols, were abolished.